CRP-Santé

Wageningen University, Belarusian State University

SIMULATION-BASED ANALYSIS IN THE STUDY OF COMPLEX BIOMOLECULAR SYSTEMS

Membrane Proteins and Actin Polymerization Assays

Petr V. Nazarov

Microarray Center, CRP-Santé, Luxembourg

erp-sante.healthnet.lu

I. Modeling

Types of models

- Stages of model building
- General application of models

II. Membrane Proteins

- Problem definition
- Experimental methods and object: M13 major coat protein
- Simulation-based data analysis
- Results and conclusions

III. Actin Polymerization

- Basic information
- Experimental methods
- Models: simulation and analytical
- Some preliminary results
- Summary

PART I

direction of signal flow CRP

TYPES OF MODELS

By the Method of Mathematical Description

fast

- can be verified by analytical methods
- cannot be applied to complex systems
- problems of interpretation of obtained results

- complex systems can be studied
 - interpretation of the results is straight forward
 - parallel computing can be applied
- computational resource intensive

STAGES OF SIMULATION MODELLING

PART II

MEMBRANE PROTEINS Simulation-based Data Analysis for Determination of the Structure and Position of Membrane Proteins

Wageningen University, NL Laboratory of Biophysics

- Dr. Marcus Hemminga
- Rob Koehorst

MEMBRANE PROTEINS

- Participate in almost all cell activities
- Structure determination still at frontier structural biology

To Develop a Methodology, Providing:

Protein aggregation

OBJECT OF STUDY

Bacteriophage M13 Major Coat Protein (test system)

I-shape, L-shape, Banana-shape?..

AEGDDPAKAAFNSLQA SATEYIGYA**W**AMVVVIV GATIGIKLFKKFCSKAS

Protein Features

- 50 amino acid residues
- Transmembrane protein
- Mainly α-helical

- ◆ Structure in micelles ≠ structure in membrane
- ◆ Structure oriented bilayers ≠ structure in membrane
- Crystals for membrane proteins are difficult to produce

- Protein structure
- Protein aggregation
- Mobility

- Protein structure
- Protein embedment
- Protein aggregation

Structure in vesicles = structure in membranes
 NEED: Advanced data analysis

EXPERIMENTAL APPROACH: FRET

Förster Resonance Energy Transfer Spectroscopy C R P

Efficiency (probability) of energy transfer for donor-acceptor pair:

*R*₀ - Förster distance, a constant characterising
 donor-acceptor pair

Efficiency of energy transfer is related to donor-acceptor distances in the system => can be related to STRUCTURE

SITE-DIRECTED LABELLING

Bacteriophage M13 Coat Protein

FRET Features

CRP

- A Natural Trp(26) is used as donor
- Several Cys mutants are available
- Acceptor (AEDANS) covalently linked to Cys

Trp – donor

EXPERIMENTS

Series of Titration Experiments

400

EXPERIMENTAL DATA

Experimental Energy Transfer Efficiencies

DATA ANALYSIS

- Physical parameters are directly fitted and estimated
- Complex system is analyzed
- Global analysis of experimental data is applied

SIMULATION

Basics

Simulation

- Select a donor
- Calculate distances to all acceptors
- Calculate probability of energy transfer
- Calculate efficiency from an average of probabilities

E is a function of donoracceptor distances !

ANALYSIS

Global (simultaneous) analysis

RESULTS: GLOBAL FIITING

Final Structure and Membrane Embedment

Nazarov et al. (2007) Biophys. J., 92, p.1296-1305

Final Structure and Membrane Embedment

Nazarov et al. (2007) Biophys. J., 92, p.1296-1305

Final Structure and Mambrane Embeddment

Final Structure and Membrane Embedment

Nazarov et al. (2007) Biophys. J., 92, p.1296-1305

Final Structure and Membrane Embedment

Nazarov et al. (2007) Biophys. J., 92, p.1296-1305

APPLICATIONS TO OTHER SYSTEMS

Peptide of subunit *a* of H⁺ vacuolar ATPase

(responsible for osteoporosis)

WALP

CRP

(collaboration with group of Prof. A. Killian)

Hesselink R.W., et al., Biophys. Biochem. Acta 1716 (**2005**) 137-145 Sparr E., et al., J. Biol. Chem. 280 (**2005**) 39324-39331

CONCLUSIONS

Trp

C-terminus

Combination of fluorescence technique and advanced data analysis methods allows to obtain novel structural information about membrane proteins

Simulation-based fitting plus global analysis
 FRET data allows simultaneous determination
 of protein structure, membrane embedment and aggregation

♦ The resulting structure of membraneembedded M13 coat protein is \rightarrow

The same approach can be used to study other membrane proteins

PART III

ACTIN POLYMERIZATION

Simulation-based Study of Actin Polymerization

ANTÉ

CRP

IMPORTANCE

Cell Processes Involving Actin Polymerization

- Cytoskeleton formation
- Active transport of molecules
- Cell movement (filopodia and lamellipodia)
- Wounds healing, etc.
- Metastasis propulsions
- Bacteria propulsion (<u>Listeria monocytogenes</u>)

GENERAL OVERVIEW

Biochemical Reactions

Cell Science

Actin Dynamics

Thomas D. Pollard, Laurent Blanchoin and R. Dyche Mullins

CRP

Fluorescence Techniques

Actin labelling with GFP + FCM (fluorescence confocal microscopy)

- Actin labelling by pyrene and detecting the fluorescence only from filaments (pyrene-actin experiments)
- FRAP (fluorescence recovery after photobleaching)
- Low concentration labelling with
 <u>fluorescence speckle microscopy</u>

Analytical models give rough approximation, when are applied for the data analysis in biological systems

INTRODUCTION

Goal and Tasks for the Project

Developing an advanced computer-simulation approach, based on stochastic and analytical modelling algorithms, for the simulation and analysis of the actin filament formation and its effect on small bodies motility.

- Build and test models for molecular reactions
- Adapt the models to analysis of experimental data (e.g. actin-pyrene, FRAP data, biophysical experiments with bead motility, etc.)
- Try to build the Monte Carlo model for actin-based motility of small bodies (beads, bacteria)

MODELS

Levels of Modelling

Figure. Hierarchical organization of the model being developed

Formalization

The model for the reactions includes 21 reaction and 14 reagents

Reagents (14)

- Actin is G- an F-form (ATM, ADM and ATF, ADF)
- Free filament barbed and pointed ends (FTB, FTP, FDB, FDP)
- Capping proteins in free and bound forms (CBM, CBF, CPM, CPF)
- Formin in free and bound forms (FOM, FOF)

Reactions (21)

- Nucleations (spontaneous, induces)
- Barbed and pointer end association for ATP- and ATD-containing actins
- Barbed and pointed end dissociation for ATP- and ATD-containing actins
- Capping and uncapping of barbed and pointed ends
- Formin-related reaction (binding, unbinding, formin-initiated association)
- Actin aging and ATP-recharge

Formalization: Reactions

CRP

Figure. Diagrams of the simulated reactions

Actin System Representations

Simplified filament model

Simulation of Reaction: Monte Carlo Approach

 Gillespie algorithm (stochastic discrete-event simulation)

> separate complex interaction into unidirectional simplest ones;

> \bullet introduce concentration and experimental rate constants, k_i not dependent on concentration;

> ✤ calculate occurrence times of events (reactions), based on k_i and number of molecules

 \bullet take the case with minimal t_i

v – considered volume

IMPLEMENTATION

Simulation & Analysis Software Tools

- ActinSimChem, ActinPyreneFit developed in Borland C++ Builder 6.0
- Features: fast simulation of actin polymerization without structural representation of filaments
- Analysis of actin-pyrene experiments

Figure. ActinSimChem screenshot with G- and F-actin concentration dynamics

Analytical vs. Simulation

Simulation vs. Experiment

TESTS

Structure-resolved Filament Model vs Non-structure-resolved Filament Model

Results are the same in most of the experimental conditions. Difference can be observed only at long time, with the absence of actin ATP recharge

PRELIMINARY RESULTS

Study of the Effects of Different Proteins

Figure. The determined k_{SNUC} for different experimental systems. *Pure actin* the generalization of several experiments with pure actin, [A] = 1.5, 3, 6 μ M. *Formin* – known nucleator. *Testin-Nt* (6 μ M of *actin*), *testin-Nt* (1.5 μ M of *actin*), *testin-Nt* + *CytoB*, *formin* + *CytoB* – studied systems.

Levels of Modelling

Figure. Hierarchical organization of the model being developed

- Features of the mesoscale model
 - filaments and beads are considered as physical objects with mass, coordinates, sizes, velocities, moments, etc.
 - molecules considered in terms of concentrations.

possibility to apply the model directly for the FRAP data
 analysis.

Dynamics and Kinematics

Filaments and bead are considered to be solid bodies.

Simulation of mechanical interaction during small time dt (~10⁻⁴ s) in accordance with the force model using Newton laws.

Translational motion:

Rotational motion:

$$\begin{cases} \overrightarrow{ma_c} = \overrightarrow{F} \\ \overrightarrow{a_c} = \frac{d\overrightarrow{V_c}}{dt} \\ \overrightarrow{V_c} = \frac{d\overrightarrow{R_c}}{dt} \end{cases}$$

$$\begin{cases} \frac{d\vec{M}}{dt} + \left[\vec{\Omega} \times \vec{M}\right] = \vec{K}; \\ \vec{M} = \vec{I}\vec{\Omega}; \\ \vec{\Omega} = \frac{d\vec{\varphi}}{dt}; \end{cases}$$

CRP

Figure. Filament and its dynamical parameters

- *m*, *C* mass and mass center;
- F-net force;
- a acceleration;
- V linear velocity;
- R_c translation of mass center;
- M moment of force;
- K-moment of impulse;
- I inertia tensor;
- Ω angular velocity;
- ϕ angle of rotation.

Mechanical Interactions

- Types of interactions:
 - Viscous friction
 - Brownian effect (for filaments and bead);
 - Repulsion due to filament crossing
 - Filament-filament crossing;
 - Filament-bead crossing

 → Attraction due to ActA-filament linkage.

Figure. Interacting filaments (A) and forces affecting the bead (B)

Simulation Software Tool ActinSim3D

- Developed in Borland C++ Builder 6.0 environment
- Visualization OpenGL
- Features:
 - simulation of actin polymerization (simplified reactions)
 - spatial structure of actin network
 - mechanical interaction

🕨 🙆 🖌	T C	h M		Button1	Button2	
Parameters: Concentrations Simulation	 Mechanics	Rates Bacterium	2D 3D	 8 4	- 2 9	
Name		Value				
Consider cube with side le	ength (um)	4				
Simulation method		First reaction				
Time step [s]		0.0001				
Observation Time stop [a]		10.000				
onservation time steh [s]		0.05				fi 📝
Maximum time [s]		2				
Maximum time [s] Info: A1 A Current state	4 N N	0.05 2 React prob			XXX	H.
Maximum time [s] Info: A1 A Current state Parameter	A N N	0.05 2 React prob Jum of reactions				1.
Maximum time [s] Info: A1 A Current state 1 Parameter Maximal time [s]	A N N Value 6	0.05 2 React prob lum of reactions				1×
Maximum time [s] Info: A1 A Current state 1 Parameter Maximal time [s] Volume [litres]	A N N N Value 6 6.4E-14 1	0.05 2 React prob Jum of reactions				
Maximum time [s] Info: A1 A Current state I Parameter Maximal time [s] Volume [litres] Time [s]	A N N Value 6 6.4E-14 5.951609;	0.05 2 React prob Jum of reactions 2705552				1×

Figure. ActinSim3D screenshot with branched 3D filament structure

Demonstration of ActinSim3D Simulation

Parameters of simulation

- **+** ACM = 4 μM
- **+** ARP = 0 μM
- **+ CBM** = 0.5 μM
- Bead size = 0.4 μm
- + Considered volume 64 μm³
- Filament-bead interactions
- Simulation time 20 s
- Calculation took ~ 30 minutes

Figure. Animated bead propulsion for the simplified model of reactions

FRAP

Application of Developed Models for FRAP Analysis

The shape of FRAP recovery for bleached actin filaments depends on filament length, rate constants for barbed and pointed ends, filament concentration

- Size of the bleach spot
 can influence in the case
 of specific ordering of
 filaments
- In some cases polymerization processes can be approximated by binding and diffusion models

Performed by Alexander Halavatyi under the supervision of dr. M. Yatskou and prof. E. Friederich

SUMMARY

The simplified actin filament representation is valid and can be used for analysis of actin-pyrene experiments via simulation-based fitting approach

Being properly analyzed, actin-pyrene experiments can provide important information about actin systems (*knuc*, *kon*, *koff*)

Honte Carlo modeling of actin polymerization and actinbased motility are challenging, but realizable tasks

Current state: application of the developed structureresolved model for the analysis of FRAP data (A. Halavatyi, M.Yatskou)

CONCLUDING REMARKS

Combination of fluorescence techniques (FRET, FRAP, FLIM, etc) and advanced data analysis methods allows to obtain novel information about proteins and cellular processes

Simulation-based fitting plus global analysis is a powerful tool to study complex biomolecular systems and processes

◆ The integration of Biology and Informatics is mutually beneficial. Examples are – systems biology, bioinformatics and biostatistics from one side, and neural networks and genetic algorithms from another ☺.

ACKNOWLEDGMENTS

Belarusian State University, BY Department of Systems Analysis

- Prof. Vladimir Apanasovich
- Eugene Barsukov
- Alexander Halavatyi

Wageningen University, NL Laboratory of Biophysics

- Dr. Marcus Hemminga
- Rob Koehorst

Luxembourg University, LU Faculté des Sciences, de la Technologie et de la Communication Prof. Evelyne Friederich

Dr. Mikalai Yatskou